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A Variational Theory for Wave Propagation
in Inhomogeneous Dielectric Slab Loaded

Waveguides

CHANG-TSUO LIU AND CHUN HSIUNG CHEN

A bstract— A novel numericaf technique based on the variational formu-

lation defined only in the slab is developed to study the loaded rectangular

wavegnide with an inhomogeneous dielectric slab. The variational equation

for the boundary value problem is formulated and solved numerically, using

the finite element method with pieeewise quadratic triaf functions. A

comparison of this new technique with the conventional variational ones is

presented. Various propagation characteristics, such as the phase constant,

useful bandwidth, power handfing capacity, and attenuation constants due

to conductor and dielectric losses, are investigated for the waveguide

centrally loaded with a slab of parabolic dielectric profile. The effects of

changes in dielectric profiles are dkeussed by examining the results for the

slabs with constant and parabolic profiles.

I. INTRODUCTION

R ECTANGULAR waveguides loaded with dielectric

slabs have been investigated extensively by many

authors [1 ]– [ 14], and found possessing applications such as

differential phase shifter, filter, and harmonic frequency

separator. Most previous investigations were limited to the

problems for which the loaded slabs (symmetrical or asym-

metrical) are homogeneous. Thus the efficient field-

matching technique [14] can be applied and the characteris-

tic equations for cutoff frequencies and propagation con-

stants can readily be obtained and solved graphically or

numerically. For the waveguides loaded with arbitrary

inhomogeneous dielectrics, the approach of finding the

solutions analytically [9], [10], [15] is in general impractical,

and, therefore, other techniques such as the variational
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(Ritz) method [2], [8], [14] have to be considered instead.

Although the Ritz method is useful in solving the problem

with symmetrically loaded slabs, it is awkward in handling

the asymmetrically loaded one with discontinuous permit-

tivities. The purpose of this study is to establish a new

variational formulation which is defined only in the slab so

that it can effectively circumvent the aforementioned diffi-

culty due to the permittivity discontinuities. Another pur-

pose is to provide various propagation characteristics, for

the rectangular waveguide loaded with a slab of parabolic

profile, which are not available in the literature.

II. FORMULATIONS

Let us consider the uniform rectangular metallic tube of

width a and height b (a> b) loaded with an inhomoge-

neous dielectric slab of (PO, COC.(x )) from x = c to x= c + d

as shown in Fig. 1. The conductor and dielectric losses are

assumed to be small and will be neglected at the beginning

of this study.

For this configuration it is convenient to use LSE and

LSM modes to describe the wave fields [2]. Mathemati-

cally, the fields (with time factor e@) of LSE (or LSM)

modes can be derived from the magnetic-

type Hertz vector potential ~h (or R,):

()
~~(x, y, z)=,tq~(x)cos ~ e-Jk’z,

()E,(x, y, z)=~+,(x) sin ~ e-Jk’z,

(or electric- )

~=(),l,z,...

(la)

~=l,z,...

(lb)
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Fig. 1. GeometW of inhomogeneous dielectric slab loaded waveguide.

TABLE I
DEFINITIONS OF SYMBOLS IN (2) AND (7)

Symbo 1 LSE mode LSM mode

$(x) q(x) @e(x)

[’
1 , Osx <c, c+d<x~a ‘

p(x) 1 (

er(x) ‘
c~x~o+d

1

al 1 0 1

a21
o 1

*12
1 0

a22
1 0

where Oh (or +,) satisfies the eigenvalue problem

[ ‘I+[w+’b)’(’)
–: P(x) &

=.gr(x)+(x), O<x<a

all~(0)+aly#(O)=O

%44+% 2W=0. (2)

The number ~ is interpreted as an eigenvalue

.$=k2 =a2pOC0 (3)

and k= is the propagation constant along the guide

k, =fi-ja (4)

where ~ and a are the phase and attenuation constants,

respectively, The other symbols are given in Table I. .

Of course, the wave field @(x) should satisfy the con-

tinuity conditions for tangential E and H at the point

xd(O <xd <a) where the permittivity is discontinuous, i.e.,

+(x; )=+(x; ) (5a)

d+ .
(5b)P(x; )~(%O=P(x:)& ).

The particular wave fields associated with (la) and (lb)

will be named the LSE~. and LSM~. modes, respectively,

where the index m (=1,2, 0. .) denotes the order of eigen-

values & defined by (2), (3) and the one n describes the
field variations in they-direction as specified by (l). Physi-

cally, the particular eigenvalues $Cmnwhich. correspond to

kz = O may be identified with the cutoff frequencies ~cmnof

the waveguide

‘$Cmn=(WC-. )2P0’0. (6)

The conventional variational equivalent of (2) can be

written as

81(+)=0

mJ=Ja{P(x)($@)2

where +(0) = ~(a)= O for LSE modes, and (do@)/=

(do@)/ =0 or +(0), +(a) are unconstrained for LSM

modes. For the case there exists permittivity discontinuity

at x~, the actual computation of the integral J; in (7)

should be separated into parts, ~;~ + J;;. In this manner,

the continuity conditions (5) may be identified with the

natural transition conditions of the variational formulation

(7).

Conventionally, either Ritz or finite element method

may be used for solving (7); the former may be better for

the symmetrically loaded problem while the latter for the

asymmetrically loaded one, as explained later.

The Ritz method usually chooses the harmonic trial

function ~(x) such that

;(x)= ~cizfi(x) (8)
i
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where

I ()i~x
sin — i=l,2, ..., for LSE modes

a’
u,(x)=

()

i7rx
Cos — i=(), l,z, ..., for LSM modes.

a’

(9)

Since the trial function (8) for LSM modes may violate the

natural transition condition (5b) whenever there is a jump

in permittivity at the air– slab interfaces, its use then makes

the approximate solution very poorly convergent to the

true one, especially when the jump is large. This difficulty

has been circumvented, at least for the centrally loaded

problem, by using the so-called hybrid trial, functions as

follows [ 14]:

(lo)

[0, o<~<~, c+d<x<a J

However, this modification is still not efficient for the

asymmetrically loaded problem [8].

The finite element method [16], which adopts piecewise

polynomials as trial functions, maybe useful in solving the

variational problem (7) with an inhomogeneous slab load-

ing. An advantage of this method is that the transition

condition (5b) may be met naturally if the node points of

the subdivision happen to coincide with the points of the

profile discontinuities. Thus the aforementioned difficulty

of using Ritz method for LSM modes can be avoided if

finite element method is employed instead. In this study,

the piecewise quadratic function

(X-xi)(x-xi+l)
@(x)=@~-l (Xt_, -Xt)(xi-l ‘Xi+l)

(x-xl_, )(x-xl+,)

‘+1 (x, -xi_,)(xl –~1+,)

(x-x, _,)(x-x,)

‘o’+’ (x,+,–xl-,)(x,+,–xl) ‘

will be chosen as the trial function for approximating the

desired solution ~(x) in the element [x,_ ~, xi+ ,], where

1#1,= 6(x, ) and X, is a node of the subdi~sion. The points
x = c and x= c + d should be chosen as the subdivision

nodes, as explained before.

The approximate (or discrete) system corresponding to

the variational problem (7), using Ritz method (8)–(10) or

finite element method (1 1), can be written as

A@=&l?@ (12)

where A and B are known square matrices, while @ and t

are eigenvector and eigenvalue to be determined. The col-

umn vector @ is related to C, or O, depending on whether

Ritz or finite element method is employed.

The conventional variational formulation (7) is defined

over the whole region [0, a]. Hence attention must be paid

to the choice of the trial function for speeding convergence

(Ritz method), or unnecessary subdivision must be made in

the air regions where the field behavior is actually known

(finite element method). This disadvantage can be avoided

by taking advantage of the known solution behavior in the

air regions and then formulating the variational equation

only within the inhomogeneous slab [17].

Let us express the solution@ of (2) as

[

Dk sinh (ox), ()<x<.

oh(x)= +h(x), .<x<c+d

1

(13a)

Fhsinh[o(a–x)], c+d<x<a

for LSE modes, and

[

D,cosh ( ox ), ()<X<C

$=(X)= +,(X), .<x<c+d

1

(13b)

Fecosh[o(a–x)], c+d<x<a

for LSM modes where

(14)

{
0,1,2,..., for LSE modes

‘= 1,2,..., 1for LSM modes “

By matching the continuity conditions for tangential E and

H at x= c and x= c+ d, one can obtain the alternative

eigenvalue problem for ~~( x ) (or ~e(x )) as follows:

[

d+(x)
–: P(~)~

1
+I#p(x)+(x)=g[r( x)–p(x)]lj(x),

c<x<c+d (15a)

(15b)

b21~(c+d)+b2#(c+ d)=0 (15C)

where ~ is defined by (3); V2 by (14); p(x ), r(x) are defined

by Table I; and other symbols by Table IL

The new variational formulation, which is defined in the

slab and also equivalent to (15), is as follows:

81(~)=0 (16)

+[v2p(x)–~(r(x) –p(x))]y2(x))dx

+b12p(c)y2(c)+b22 p(c+d)~2(c+d)

where ~ is completely unrestricted at x= c and x= c + d.

Obviously, the continuity conditions ( 15b) and ( 15c) are

now regarded as the natural boundary conditions of the

variational problem.

The new variational equation (16) is solved numerically,

using the finite element method with the quadratic trial
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TABLE II

DEFINITIONS OF SYMBOLS IN (15) AND (16)

function (1 1). For

~ [c, c+d], instead of

symbol LSE mode LSM mode

y(x) ph(x) Pe(x)

b
11

-1 -1

b
21

1 1

blz
V coth (% ’C) v tanh (Vc) / P(c)

b
22 v cothb[a- (c+d)]} [

v tam v[a-(c+d)]} / P(c+d)

this purpose we divide the interval

[0, a], into subintervals (or elements).

Then the continuous system (16) can again be cast into the

discrete form as in (12), which is the ultimate matrix

eigenvalue problem to be solved numerically.

HI. RESULTS

In this study, the propagation characteristics for various

dielectric-slab-loaded waveguides (symmetrically or asym-

metrically loaded) are investigated with emphasis on the

slab of parabolic profile

4(erm–1)
6,(X)= ~, (X-c)(c+d-x)+l, C<x<c+d

(17)

and that of constant profile

~r(x)=%mj c<~<c+d. (18)

Here c, d are parameters defined in Fig. 1 and c,~ is the

maximum permittivity in the slab. Of course, the profile

(18) is chosen only for the purpose of comparison or

accuracy check.

For discussing the approaches which correspond to dif-

ferent formulations and trial functions, three numerical

methods (the conventional Ritz method based on (7) and

(8), the conventional finite element method on (7) and (1 1),

and the new finite element method on (16) and (11)) are

used to solve the problem (18) with exact solutions.

Typical numerical results to reflect the errors

Error= 100 ‘“(~)–k=(~)
ke(~)

percent (19)

in the ka —pa diagrams for the dominant (LSE,0 ) mode

are depicted in Fig. 2 for comparison. These curves are
based on the three methods for the same matrix size (rank

N= 5). Here ke(j3 ) is the exact wavenumber, corresponding

to a given ~, computed from the field-matching technique

and lc~( ~ ) is the approximate one, corresponding to the

same ~, computed from one of the three numerical meth-

ods. Note that the maximum errors, associated with the

new finite element method,. for symmetrically and asym-

metrically loaded cases are so small (of the order 10 – 2

percent) that they are represented practically by a horizon-

tal line in Fig. 2.

By examining the results in Fig. 2 as well as the others

(not shown) for the three methods one may have the

I I
012345678
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35

3,0 -
~
v 2.5 - R
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[ I
012345678
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Fig. 2. Errors in ka – ~a diagrams for dominant mode by three numen-

cal methods. Ritz method (R 1 conventional finite element method
(CFE), and new finite element method (NFE) of same matrix size
(matrix rank N= 5) are used to solve waveguide problem with homoge-
neous slab loading (18) (a/b =2, d/a = 0.1, c,m = 100). (a) Symmetri-
cally loaded case (c/a =0.45). (b) Asymmetrically loaded case ( c\a =
0.1).

conclusions as follows. The new finite element method is

superior to the conventional Ritz and finite element meth-

ods in the sense of accuracy and rate of convergence, no

matter whether the waveguide is symmetrically or asym-

metrically loaded. The Ritz method is efficient in solving

the symmetrically loaded problem, though it is awkward in

handling the LSM modes in an asymmetrically loaded one

due to the difficulty in fitting the natural transition condi-

tion (5 b). The conventional finite element method can

satisfactorily be applied to the symmetrical- and asymmet-
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Fig. 3. Propagation characteristics for waveguide centrally loaded with

slab of parabolic profile (17) (a/b= 2). (a) Useful bandwidth. (b)
Dispersion relation for dominant mode ( c,m = 9). (c) Power handling

capacity for dominant mode ( c,~ =9). (d) Normalized wall attenuation

constant for dominant mode ( c,m =9, q=-). (e) Normalized
dielectric attenuation constant for dominant mode (c,m = 9).

rical-loading cases, hence it becomes of importance

whenever the Ritz method is less efficient. The new finite
element method has advantages in several aspects, such as

in reducing the required computer storage and in minimiz-

ing the effort in node arrangement. However, it is some-

what less flexible in mathematical formulations and actual

computations.

In the following (Fig. 3(a)–(e)), various propagation

characteristics of the guide centrally loaded with a slab of
parabolic profile (17) are plotted and examined in detail.

The useful bandwidth is defined as the ratio of the cutoff

frequency of the first higher order mode to that of the

dominant mode [7], [14]. For the guide with a> b, the

dominant mode is the LSEIO one, and the first higher order
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Fig. 4. Comptisons of characteristics for centrally loaded guides with

parabolic and constant permittivity profiles ( 17) and ( 18) (a/b= 2). (a)
Useful bandwidth. (b) Dispersion relation for dominant mode (d/a=
0.5). (c) Power handling capacity for dominant mode (d/a =O.5). (d)
Normalized wall attenuation constant for dominant mode fd/a = 0,5).

(e) Normalized dielectric attenuation constant for dom&& mode

(d/a =O.5).

5

mode is the one among LSE20, LSE ~,, and LSM1, modes associated (or maximum) average power transmitted across

for which the cutoff frequency is lowest. the guide. It is assumed that the breakdown of a guide will
The power handling capacity is defined as take place at the position where the field is highest in the

PHC=P~ /( abE;~) (20)
air regions, i.e., at the air– dielectric interface [1].

The wall and dielectric attenuation constants, aW and ad,

where E~~ is the breakdown field strength and Pn is the for smaller conductor and dielectric losses are calculated
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Fig. 5. Comparisons of waveguides centrafly loaded with parabolic and
constant profiles (17) and (18) of same permittivity height ( c,~ = 2, a/b
=2). (a) Comparisons of dominant mode characteristics based on same
cutoff frequency ( kca = 2.66). (b) Comparisons of dominant mode
characteristics based on same bandwidth ( = 2.20).

from the well-known perturbation formulas [1], [2]. Plotted

in Fig. 3(d) and 3(e) are the normalized attenuation con-

stants with respect to conductor surface resistivity R. and

dielectric loss tangent tan 8J = c~(x)/cj(x)) which is as-

sumed independent of x.

Depicted in Fig. 3(a) is a plot of useful bandwidth versus

d/a with c,~ as parameters. Note that for a smaller given

value of c,~ such as e,~ =2, the bandwidth is limited by

the LSM1 ~ (or LSE20) mode depending on whether d/a<
(or>)O.65. Note also that for a given c,~ that is not too

low (for examples, .s,~ =4, 9, and 16), there exist two slab

widths dl and d2 for which the bandwidth has two peaks.

For those values of d such that dl < d< d2, the bandwidth

is limited primarily by the LSE ~, mode. But for the values

of d< d, (or d>d2 ), the bandwidth will be determined by

the LSM1 ~ (or LSE20) mode. Actually, the peak occurs at

the particular width d, (or d2 ) for which the cutoff fre-

quencies for LSE1, and LSM1 ~ modes (or those for LSE1 ~

and LSEZO modes) are equal. Of course, an increase in the
ratio a/b will lead to an increase in the useful bandwidth.

However, this increase will be accompanied by a decrease

in the power handling capacity. Note that the right peak is

usually the maximum bandwidth available, and is nearly

the same for most values of C,m.

In Fig. 3(b) it is of interest to note that the asymptote

811

(the dashed line ~a= ka) to the curve for d=O intersects

all dispersion curves at finite ka. Thus the dielectric-slab-

loaded structure may support a slow wave when ka is

&eater than that at the intersection of solid and dashed

curves.

Note that the power handling capacity for tt loaded

guide (Fig. 3(c)) may be less than that for an unloaded one “

in some frequency range if the slab is not thick enough to

tolerate the high field strength in the dielectric region. Of

course the power handling capacity can be increased when

d or cr~ is increased.

Note also that there may exist a certain range for c,~, d,
and k such that the wall attenuation constant (Fig. 3(d))

can be reduced when an empty guide is dielectrically

loaded.
Comparisons of the propagation characteristics for the

same guiding structure (a/b =2) centrally loaded with

slabs of parabolic and constant profiles, (17) and (18), are

summarized in Figs. 4 and 5.

Fig. 4(a)–(e) first compare the results for the slabs of

different profiles but of the same t,~ and d.
In Fig. 5(a) and (b) comparisons are made, under two

different bases, of the characteristics for parabolic and

constant profiles with the same permittivity height (c,~ =2).

The constant profile (d/a =0.2) and the parabolic one

(d/a =0.3) are compared on the basis of producing the

same cutoff frequency (kca = 2.66), on the one hand. The

same constant profile (d/a =0.2) and the parabolic one

(d/a =0.4) are compared on the ground of providing the

same bandwidth (=2.20), on the other hand.

IV. CONCLUSIONS

A numerical technique, based on the new variational

formulation (16) and the finite element method, has been

developed for studying the waveguide problem with an

inhomogeneous dielectric slab loading, From numerical

trials it is found that this new variational technique is

much better than the conventional vtiriational ones in the

following aspects: accuracy, rate of convergence, and ef-

fectiveness in handling the symmetrically and asymmetri-

cally loaded problems with permittivit y discontinuities.

Various numerical results have been analyzed for the

guide centrally loaded with a slab of parabolic permittivity

profile. It is found that the useful bandwidth can be

slightly increased by the slab loading with parabolic and

constant profiles, and the propagation characteristics of

both profiles are similar in general.
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On the Quasi-TEM Modes in
Inhomogeneous Multiconductor

Transmission Lines

ISMO V. LINDELL, MEMBER, IEEE

A fsstract— We consider the general inhomogeneous shielded N-conductor

transmission line and derive several properties for the quasi-TEM modes.

The concept of quasi-TEM is deduced through an asymptotic series

expansion of the fields and conditions for the propagation constant as well

as the construction of the field are presented. It is seen that the problem is

reduced to two static two-dimensionaf boundary value problems. The

concepts of propagating modes and impedance modes are introduced and it

is shown, that in the generaf case, these are not the same. The speciaf cases

of propagating impedance modes are finally discussed and are seen to exist

nmfer certain symmetry conditions of the mukiconductor line.

I. INTRODUCTION

T HE INHOMOGENEOUS, uniform, multiconductor

transmission line is a popular component in many

microwave applications, especially in filter-directional cou-

pler design. It is also well known that the dominant waves

at the low-frequency end of the spectrum are not of pure
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TEM but quasi-TEM character. For a one-conductor

shielded line this has been confirmed through asymptotic

field analysis in [1], [2], but a solid systematic theory for

multiconductor lines seems to be lacking. In what follows,

the Sections II-V give the analysis and the method of

constructing the quasi-TEM fields for a general inhomoge-

neous N-conductor shielded line. The construction is based

on solutions of two sets of static field problems plus an

eigenvalue problem for boundary conditions of the propa-

gating modes.

The boundary condition or circuit theoretical point of

view is then treated in Sections VI– IX. Previous considera-

tions [5], [6], based on the assumed quasi-TEM character of

the fields, have concentrated only on propagating modes.

Being simpler alt the terminations of the line, another set of

modes, impedance modes, are introduced here and their

relation to the propagating modes is studied. The imped-

ance modes are defined as such voltage and current distri-

butions on the line that are the same except for a scalar
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