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A Variational Theory for Wave Propagation
in Inhomogeneous Dielectric Slab Loaded
Waveguides

CHANG-TSUO LIU anp CHUN HSIUNG CHEN

Abstract— A novel numerical technique based on the variational formu-
lation defined only in the slab is developed to study the loaded rectangular
waveguide with an inhomogeneous dielectric slab. The variational equation
for the boundary value problem is formulated and solved numerically, using
the finite element method with piecewise quadratic trial functions. A
comparison of this new technique with the conventional variational ones is
presented. Various propagation characteristics, such as the phase constant,
useful bandwidth, power handling capacity, and attenuation constants due
to conductor and dielectric losses, are investigated for the waveguide
centrally loaded with a slab of parabolic dielectric profile. The effects of
changes in dielectric profiles are discussed by examining the results for the
slabs with constant and parabolic profiles.

I. INTRODUCTION

ECTANGULAR waveguides loaded with dielectric

slabs have been investigated extensively by many
authors [1]-[14], and found possessing applications such as
differential phase shifter, filter, and harmonic frequency
separator. Most previous investigations were limited to the
problems for which the loaded slabs (symmetrical or asym-
metrical) are homogeneous. Thus the efficient field-
matching technique [14] can be applied and the characteris-
tic equations for cutoff frequencies and propagation con-
stants can readily be obtained and solved graphically or
numerically. For the wavegnides loaded with arbitrary
inhomogeneous dielectrics, the approach of finding the
solutions analytically [9], [10], [15] is in general impractical,
and, therefore, other techniques such as the variational
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(Ritz) method [2], [8], [14] have to be considered instead.
Although the Ritz method is useful in solving the problem
with symmetrically loaded slabs, it is awkward in handling
the asymmetrically loaded one with discontinuous permit-
tivities, The purpose of this study is to establish a new
variational formulation which is defined only in the slab so
that it can effectively circumvent the aforementioned diffi-
culty due to the permittivity discontinuities. Another pur-
pose is to provide various propagation characteristics, for
the rectangular waveguide loaded with a slab of parabolic
profile, which are not available in the literature.

II. FORMULATIONS

Let us consider the uniform rectangular metallic tube of
width ¢ and height b (a=b) loaded with an inhomoge-
neous dielectric slab of (u, €4¢,(x)) from x=c to x=c+d
as shown in Fig. 1. The conductor and dielectric losses are
assumed to be small and will be neglected at the beginning
of this study.

For this configuration it is convenient to use LSE and
LSM modes to describe the wave fields [2]. Mathemati-
cally, the fields (with time factor ¢/’) of LSE (or LSM)
modes can be derived from the magnetic- (or electric- )
type Hertz vector potential II, (or II,):

n=0,1,2,-;-

(1a)
n=1,2,--

(1b)

— . ATY \ s
Hh(x,y,z):xqsh(x)cos(Ty)e sz

TT,(x, 7, 2)=s6,(x)sin (222 ) ks,

0018-9480 /81 /0800-0805$00.75 ©1981 IEEE
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Fig. 1. Geometry of inhomogeneous dielectric slab loaded waveguide.

TAB

LEI

DEFINITIONS OF SYMBOLS IN (2) AND (7)

Symbol LSE mode
#(x) g, (x)
p(x) 1
1 y 0&x<c, c+d<
r(x)
er(x) R cg¢x<£ced
21 0
a,, o]
&12 1
322 1

LSM mode

g, (=)

1 , 0<x<c, c+d<x$a‘(
{‘é‘i’(‘x—)‘ ’ cgxLo+d j

x£

-

J

where ¢, (or ¢,) satisfies the eigenvalue problem

0 P4 [(2) 4] px))
=§r(x)¢(x),
ap %(0)4”“12‘#(0):0

O<x<a

d
ay 22 (a)+and(a)=0.

The number £ is interpreted as an eigenvalue

@)

E=k?=0wlpqeg

(3
and k, is the propagation constant along the guide

k - :B _.1 o (4)

where B and a are the phase and attenuation constants,
respectively. The other symbols are given in Table I.

Of course, the wave field ¢(x) should satisfy the con-

tinuity conditions for tangential £ and H at the point
- x4(0<x,<<a) where the permittivity is discontinuous, i.e.,

¢(xg )=o(x, ) (52)

(i )R () =p(x YR (xE).  (5b)

The particular wave fields associated with (1a) and (1b)
will be named the LSE,,, and LSM,,, modes, respectively,
where the index m (=1,2, - - -) denotes the order of eigen-
values §,,, defined by (2), (3) and the one n describes the
field variations in the y-direction as specified by (1). Physi-
cally, the particular eigenvalues £, which. correspond to

k, =0 may be identified with the cutoff frequencies f, of
the waveguide

§cm,, = (2 ch,,,,, )2H0§0- (6)

The conventional variational equivalent of (2) can be
written as

81(q>):0
)= ["|p( )

+[((nTﬂ)szkf)P(x)*&r(x)]&(x)}dx )

where ¢(0)=¢(a)=0 for LSE modes, and (d¢)/(dx)}0)=
(d¢)/(dx)(a)=0 or ¢(0), $(a) are unconstrained for LSM
modes. For the case there exists permittivity discontinuity
at x,, the actual computation of the integral f§ in (7)
should be separated into parts, /5 + [¢ . In this manner,
the continuity conditions (5) may be identified with the
natural transition conditions of the variational formulation
.

Conventionally, either Ritz or finite element method
may be used for solving (7); the former may be better for
the symmetrically loaded problem while the latter for the
asymmetrically loaded one, as explained later. '

The Ritz method usually chooses the harmonic trial
function ¢(x) such that

é(x): E_Ci”i(x) (®)
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where

. [inx ,
sm(—a—), i=12,---, for LSE modes
ul ( x) = l aTX

cos(———), i=0,1,2,---, for LSM modes.

a

)
Since the trial function (8) for LSM modes may violate the
natural transition condition (5b) whenever there is a jump
in permittivity at the air—slab interfaces, its use then makes
the approximate solution very poorly convergent to the
true one, especially when the jump is large. This difficulty
has been circumvented, at least for the centrally loaded

problem, by using the so-called hybrid trial functions as
follows [14]:

u,(x):cos(l—zyﬁ), 0<x<a, i=0,2,---. (10)
CJim(x—c) -

u(x)={"Ta ] = =1
0, O0=<x<ec, ctd<x<a

However, this modification is still not efficient for the
asymmetrically loaded problem [8].

The finite element method [16], which adopts piecewise
polynomials as trial functions, may be useful in solving the
variational problem (7) with an inhomogeneous slab load-
ing. An advantage of this method is that the transition
condition (5b) may be met naturally if the node points of
the subdivision happen to coincide with the points of the
profile discontinuities. Thus the aforementioned difficulty
of using Ritz method for LSM modes can be avoided if
finite element method is employed instead. In this study,
the piecewise quadratic function

(x—x)(x—x;4))
=1 X)X~ X)
(x—x,_ J(x—x,41)
T ) )
(x—x,_)(x—x,)
X (X — X))

xE[x; 4, x,41]

é(x):¢1~](x

t¢é

(11)

will be chosen as the trial function for approximating the
desired solution ¢(x) in the element [x,_,, x;,,], where
¢, =¢(x,) and x, is a node of the subdivision. The points
x=c¢ and x=c-+d should be chosen as the subdivision
nodes, as explained before.

The approximate (or discrete) system corresponding to
the variational problem (7), using Ritz method (8)-(10) or
finite element method (11), can be written as

AD=¢(BD (12)

where A and B are known square matrices, while ® and §
are eigenvector and eigenvalue to be determined. The col-
umn vector @ is related to C, or ¢, depending on whether
Ritz or finite element method is employed.
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The conventional variational formulation (7) is defined
over the whole region [0, ¢]. Hence attention must be paid
to the choice of the trial function for speeding convergence
(Ritz method), or unnecessary subdivision must be made in
the air regions where the field behavior is actually known
(finite element method). This disadvantage can be avoided
by taking advantage of the known solution behavior in the
air regions and then formulating the variational equation
only within the inhomogeneous slab [17].

Let us express the solution ¢ of (2) as

(D, sinh(vx), 0<x<c
o, (x)={¥(x), e<x<ctd} (13a)
| Fysinh[o(a—x)], ctd<x<a
for LSE modes, and
(D,cosh(vx), 0<x<c
o (x)=1¥x), c<x<c+d} (13b)
F,cosh[v(a—x)], ct+d<x<a

for LSM modes where

nw\?
ot =k2—k?+("7) (14)
n:{O,l,Z,---, forLSEmodes}
1,2,-:-, for LSM modes |

By matching the continuity conditions for tangential E and
H at x=c and x=c+d, one can obtain the alternative
eigenvalue problem for y,(x) (or ¥,(x)) as follows:

—fz[p(x)f"ﬁix)]+uzp(x>¢(x>=§[r<x>—p<x>]*P(x)’
c<x<c+d (153)

b”%(c)-f-blzx[/(c):O (15b)

b 2L (+d) + bypy(c+d) =0 (15¢)
where ¢ is defined by (3); v* by (14); p(x), r(x) are defined ’
by Table I; and other symbols by Table II.

The new variational formulation, which is defined in the
slab and also equivalent to (15), is as follows:

31(4)=0
1= [ 4E)

+[Uzp(x)—.g(r(x)—p(x))]¢2(x)}dx

+byp(e)¥?(e) +by p(ctd)y?(c+d)

where ¢ is completely unrestricted at x=c and x=c-+d.
Obviously, the continuity conditions (15b) and (15¢) are
now regarded as the natural boundary conditions of the
variational problem-(16).

The new variational equation (16) is solved numerically,
using the finite element method with the quadratic trial

(16)
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TABLE II
DEFINITIONS OF SYMBOLS IN (15) AND (16)

Symbol LSE mode
¥(x) Y,.(x)
‘b11 -1
21 !
b, v coth (ve¢)
b,, v coth{v[a- (c+d)]}

LSM mode
#.(x)
-1
1
v tanh (ve) / »(c)

v tann{v{a-(c+al]} / p(c+a)

function (11). For this purpose we divide the interval
[c, c+d], instead of [0, a}, into subintervals (or elements).
Then the continuous system (16) can again be cast into the
discrete form as in (12), which is the ultimate matrix
eigenvalue problem to be solved numerically.

111

In this study, the propagation characteristics for various
dielectric-slab-loaded waveguides (symmetrically or asym-
metrically loaded) are investigated with emphasis on the
slab of parabolic profile

RESULTS

4(c,,—1
€(x)= ——(fr;z—)(x—c)(c-f—d—x)*l- 1, csx<ctd

(17)
and that of constant profile
ex)=e,, (18)

Here c, d are parameters defined in Fig. 1 and ¢,,, is the
maximum permittivity in the slab. Of course, the profile
(18) is chosen only for the purpose of comparison or
accuracy check.

For discussing the approaches which correspond to dif-
ferent formulations and trial functions, three numerical
methods (the conventional Ritz method based on (7) and
(8), the conventional finite element method on (7) and (11),
and the new finite element method on (16) and (11)) are
used to solve the problem (18) with exact solutions.

Typical numerical results to reflect the errors

ko(B)—k(B)
B (19)

in the ka— Ba diagrams for the dominant (LSE,;) mode
are depicted in Fig. 2 for comparison. These curves are
based on the three methods for the same matrix size (rank
N=5). Here k() is the exact wavenumber, corresponding
to a given B, computed from the field-matching technique
and k,(B) is the approximate one, corresponding to the
same 8, computed from one of the three numerical meth-
ods. Note that the maximum errors, associated with the
new finite element method, for symmetrically and asym-
metrically loaded cases are so small (of the order 102
percent) that they are represented practically by a horizon-
tal line in Fig. 2.

By examining the results in Fig. 2 as well as the others
(not shown) for the three methods one may have the

cs<x<c+td.

Error=10 percent

Error{(®h)

NN W
o o O

Error (%)

2

o
T

o

o n

T
4
m
m

[
N
w
&~
()]
(2]

(b)

Fig. 2. Errors in ka— Ba diagrams for dominant mode by three numeri-
cal methods. Ritz method (R), conventional finite element method
(CFE), and new finite element method (NFE) of same matrix size
(matrix rank N=5) are used to solve waveguide problem with homoge-
neous slab loading (18) (a/b=2,d/a=0.1,¢€,,, =100). (a) Symmetri-
cally loaded case (c/a=0.45). (b) Asymmetrically loaded case (¢/a=
0.D).

conclusions as follows. The new finite element method is
superior to the conventional Ritz and finite element meth-
ods in the sense of accuracy and rate of convergence, no
matter whether the waveguide is symmetrically or asym-
metrically loaded. The Ritz method is efficient in solving
the symmetrically loaded problem, though it is awkward in
handling the LSM modes in an asymmetrically loaded one
due to the difficulty in fitting the natural transition condi-
tion (5b). The conventional finite element method can
satisfactorily be applied to the symmetrical- and asymmet-
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Fig. 3. Propagation characteristics for waveguide centrally loaded with
slab of parabolic profile (17) (a/b=2). (a) Useful bandwidth. (b)
Dispersion relation for dominant mode (¢,,, =9). (¢) Power handling
capacity for dominant mode (¢,,, =9). (d) Normalized wall attenuation
constant for dominant mode (e,m:9,n=m ). (¢) Normalized
dielectric attenuation constant for dominant mode (¢,,, =9).

rical-loading ' cases, hence it becomes of importance
whenever the Ritz method is less efficient. The new finite
element method has advantages in several aspects, such as
in reducing the required computer storage and in minimiz-
ing the effort in node arrangement. However, it is some-
what less flexible in mathematical formulations and actual
computations. :

In the following (Fig. 3(a)-(e)), various propagation
characteristics of the guide centrally loaded with a slab of
parabolic profile (17) are plotted and examined in detail.

The useful bandwidth is defined as the ratio of the cutoff
frequency of the first higher order mode to that of ‘the
dominant mode [7], [14]. For the guide with a>b, the
dominant mode is the LSE, one, and the first higher order
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Fig. 4. Comparisons of characteristics for centrally loaded guides with
parabolic and constant permittivity profiles (17) and (18) (a/b=2). (a)
Useful bandwidth. (b) Dispersion relation for dominant mode (d/a=
0.5). (c) Power handling capacity for dominant mode (d/a=0.5). (d)
Normalized wall attenuation constant for dominant mode (d/a=0.5).
(¢) Normalized dielectric attenuation constant for dominant mode

(d/a=05).

for which the cutoff frequency is lowest.
The power handling capacity is defined as

PHC=P, /(abE};)

(20)
where E,, is the breakdown field strength and P, is the

associated (or maximum) average power transmitted across

the guide. It is assumed that the breakdown of a guide will
take place at the position where the field is highest in the

air regions, i.e., at the air—dielectric interface [1].
The wall and dielectric attenuation constants, a,, and a,
for smaller conductor and dielectric losses are calculated
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Fig. 5. Comparisons of waveguides centrally loaded with parabolic and
constant profiles (17) and (18) of same permittivity height (¢,,, =2, a/b
=2). (a) Comparisons of dominant mode characteristics based on same
cutoff frequency (k.a=2.66). (b) Comparisons of dominant mode
characteristics based on same bandwidth (=2.20).

from the well-known perturbation formulas [1], [2]. Plotted
in Fig. 3(d) and 3(e) are the normalized attenuation con-
stants with respect to conductor surface resistivity R and
dielectric loss tangent tand,(=e¢)(x)/€,(x)) which is as-
sumed independent of x.

Depicted in Fig. 3(a) is a plot of useful bandwidth versus
d/a with €, as parameters. Note that for a smaller given
value of ¢,,, such as ¢, =2, the bandwidth is limited by
the LSM,, (or LSE,;) mode depending on whether d/a<<
(or>)0.65. Note also that for a given e,,, that is not too
low (for examples, €,,, =4, 9, and 16), there exist two slab
widths d, and d, for which the bandwidth has two peaks.
For those values of d such that d, <d<d,, the bandwidth
is limited primarily by the LSE,, mode. But for the values
of d<d, (or d=d,), the bandwidth will be determined by
the LSM,, (or LSE,;) mode. Actually, the peak occurs at
the particular width d, (or d,) for which the cutoff fre-
quencies for LSE,, and LSM,; modes (or those for LSE;,
and LSE,, modes) are equal. Of course, an increase in the
ratio a/b will lead to an increase in the useful bandwidth.
However, this increase will be accompanied by a decrease
in the power handling capacity. Note that the right peak is
usually the maximum bandwidth available, and is nearly
the same for most values of ¢,,,.

In Fig. 3(b) it is of interest to note that the asymptote

811

(the dashed line Ba=ka) to the curve for d=0 intersects
all dispersion curves at finite ka. Thus the dielectric-slab-
loaded structure may support a slow wave when ka is
greater than that at the intersection of solid and dashed
curves. - '

Note that the power handling capacity for a loaded
guide (Fig. 3(c)) may be less than that for an unloaded one
in some frequency range if the slab is not thick enough to
tolerate the high field strength in the dielectric region. Of
course the power handling capacity can be increased when
d or €, is increased.

' Note also that there may exist a certain range fore,,,, d,

and k such that the wall attenuation constant (Fig. 3(d))
can be reduced when an empty guide is dielectrically
loaded.

Comparisons of the propagation characteristics for the
same guiding structure (a/b=2) centrally loaded with
slabs of parabolic and constant profiles, (17) and (18), are
summarized in Figs. 4 and 5.

Fig. 4(a)-(e) first compare the results for the slabs of
different profiles but of the same ¢,,, and 4.

In Fig. 5(a) and (b) comparisons are made, under two
different bases, of the characteristics for parabolic and
constant profiles with the same permittivity height (¢,,, =2).
The constant profile (d/a=0.2) and the parabolic one
(d/a=0.3) are compared on the basis of producing the
same cutoff frequency (k,a=2.66), on the one hand. The
same constant profile (d/a=0.2) and the parabolic one
(d/a=0.4) are compared on the ground of providing the
same bandwidth (=2.20), on the other hand.

1V. CoNcLuUsIONS

A numerical technique, based on the new variational
formulation (16) and the finite element method, has been
developed for studying the waveguide problem with an
inhomogeneous dielectric slab loading. From numerical
trials it is found that this new variational technique is
much better than the conventional variational ones in the
following aspects: accuracy, rate of convergence, and ef-
fectiveness in handling the symmetrically and asymmetri-
cally loaded problems with permittivity discontinuities.

Various numerical results have been analyzed for the
guide centrally loaded with a slab of parabolic permittivity
profile. It is found that the useful bandwidth can be
slightly increased by the slab loading with parabolic and
constant profiles, and the propagation characteristics of
both profiles are similar in general.
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On the Quasi-TEM Modes in
Inhomogeneous Multiconductor
Transmission Lines

ISMO V. LINDELL, MEMBER, IEEE

A bstract— We consider the general inhomogeneous shielded /V-conductor
transmission line and derive several properties for the quasi-TEM modes.
The concept of quasi-TEM is deduced through an asymptotic series
expansion of the fields and conditions for the propagation constant as well
as the construction of the field are presented. It is seen that the problem is
reduced to two static two-dimensional boundary value problems. The
concepts of propagating modes and impedance modes are introduced and it
is shown, that in the general case, these are not the same. The special cases
of propagating impedance modes are finally discussed and are seen to exist
under certain symmetry conditions of the multiconductor line.

I. INTRODUCTION

HE INHOMOGENEOUS, uniform, multiconductor
transmission line is a popular component in many
microwave applications, especially in filter-directional cou-
pler design. It is also well known that the dominant waves
at the low-frequency end of the spectrum are not of pure

Manuscript received October 14, 1980; revised February 27, 1981.
The author is with Helsinki Umversity of Technology, Radio Labora-
tory, Otakaari 5A, 02150 Espoo 135, Finland.

TEM but quasi-TEM character. For a one-conductor
shielded line this has been confirmed through asymptotic
field analysis in [1], [2], but a solid systematic theory for
multiconductor lines seems to be lacking. In what follows,
the Sections II-V give the analysis and the method of
constructing the quasi-TEM fields for a general inhomoge-
neous N-conductor shielded line. The construction is based
on solutions of two sets of static field problems plus an
eigenvalue problem for boundary conditions of the propa-
gating modes.

The boundary condition or circuit theoretical point of
view is then treated in Sections VI-IX. Previous considera-
tions [5], [6], based on the assumed quasi-TEM character of
the fields, have concentrated only on propagating modes.
Being simpler at the terminations of the line, another set of
modes, impedance modes, are introduced here and their
relation to the propagating modes is studied. The imped-
ance modes are defined as such voltage and current distri-
butions on the line that are the same except for a scalar
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